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Abstract

Quantum Chromodynamics (QCD), which describes the strong nuclear force, is difficult to

solve both analytically and numerically. We use a five-dimensional model of QCD motivated by

the Anti-de Sitter/Conformal Field Theory (AdS/CFT) duality originally proposed by Malda-

cena. We discuss how this model and other variations in the literature represent chiral symmetry

breaking, and test whether these models correctly reproduce chiral symmetry beyond leading

order. We compare the predictions of two models, one which is correct to leading order, and

another which is correct beyond leading order. The model correct to leading order does not

properly predict the pion condensation phase transition, whereas the model with the correct

beyond leading order qualitatively agrees with chiral perturbation theory in its description of

pion condensation. Using these two models, we calculate certain observables and find agreement

with experiment to within 15%.

1 Introduction

Holographic QCD is a five-dimensional model of QCD based on the AdS/CFT correspondence

conjectured by Maldacena. The AdS/CFT correspondence is a duality between an N -dimensional

theory with gravity and an N -1-dimensional theory without gravity [1]. Due to the difficulty of

calculating observables in QCD, simple models may be of great use as long as the fundamentals

of the physics are represented within the model. Holographic QCD can be used to predict masses,

decay constants, and hadron couplings at an accuracy typically around the 10-15% level.

Two of the defining characteristics of QCD are confinement and asymptotic freedom. Confine-

ment is the statement that no states carry non-zero color charge, which is carried by quarks and

gluons; therefore there cannot exist a state of an unbound quark or gluon. This may be understood

heuristically as the statement that forces between quarks do not decrease with distance, therefore
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once two quarks are separated by a sufficient amount, it is energetically favorable to create a quark-

antiquark pair rather than moving the initial quarks further apart. Asymptotic freedom in QCD is

the feature that the coupling between two quarks goes to zero at high energies or small distances.

Confinement is the main motivation for these models, because it prevents the use of perturbation

theory. Using AdS/CFT, it is possible to model the theory in a perturbative way, thus allowing

much easier calculation.

The model proposed in Ref. [2] modeled chiral symmetry, an approximate symmetry that is

broken in QCD, and included a symmetry breaking term. However, it was found in Ref. [3] that

the boundary conditions in this model were inconsistent with chiral symmetry breaking beyond the

leading order term. It was also found that parameterizing the expansion of a scalar field in the

model differently with the same boundary conditions would result in the correct representation of

chiral symmetry breaking. The initial goal of this project was to investigate the consequences of the

field redefinition. This was an extension of the work done by Ron Wilcox, a member of the class of

2011 whose honors project focused on the same model. Wilcox considered the Gell-Mann - Oakes -

Renner (GOR) relation:

m2
πf

2
π = (mu +md)〈qq̄〉 = 2mqσ, (1)

where mπ is the mass of the pion, fπ is the pion decay constant, and mu,md are the masses of the

up and down quarks, respectively. The parameter mq is identified as the quark mass; the model

assumes that mq = mu = md. The parameter σ = 〈qq̄〉 is the chiral condensate. This relation

should hold when σ is complex, according to chiral perturbation theory (χPT), but it did not in the

model. The result Wilcox found was:

m2
πf

2
π ln
( σ
σ∗

)
= 2mq(σ − σ∗), (2)

which reduces to eq. (1) when σ is real [4]. The chiral condensate is real, but in χPT, it is simply

a parameter which is not a priori restricted to be real.

From the model, it is possible to predict the details of the pion condensation phase transition.

Using the isospin chemical potential µI , the model predicts that when mπ < |µI |, a pion condensate

forms [3]. However, the model does not correctly identify the order of the phase transition. χPT

predicts a second-order transition whereas the model predicts a first-order transition. Once the

representation of chiral symmetry breaking was corrected, it was shown that the pion phase transition

predicted by the model was qualitatively the same as that predicted by χPT [3].
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While investigating the consequence of the field redefinition, it became relevant how similar

holographic models included chiral symmetry breaking. Models with different gauge choices also

claimed to have the correct representation of chiral symmetry breaking. The purpose of this project

became to investigate similar models and see what could be learned from how others treated chiral

symmetry. In particular, we focused on the models presented in Refs. [5] and [6].

2 Holographic QCD

This discussion will cover 4 different models. The first two are the “old” and “new” models, i.e. the

initial model discussed in Ref. [2] as the “old” and the model with the corrected chiral symmetry

breaking from Ref. [3] as the “new” model. The latter two models are those discussed by Da Rold

and Pomerol in Ref. [5] and by Domenech, Panico, and Wulzer in Ref. [6]. Since these models share

certain characteristics, we will first discuss the commonalities between the models, then discuss each

individually.

2.1 Characteristics of the models

Holographic QCD is a five-dimensional model. All fields are functions of the four-vector x and a

coordinate z. The four-vector x is defined such that x0 is the time coordinate and x1,2,3 = ~x1,2,3.

The coordinate z is restricted 0 < z ≤ zm, where zm is a parameter of the confining scale for QCD,

referred to as the infrared (IR) boundary. The exact value of zm will be fixed in each model. The

lower bound for z is the ultraviolet (UV) boundary ε, which is an arbitrarily small number generally

considered in the limit ε → 0. We use Einstein summation convention, so that common upper and

lower indices are summed over:

ANBN =
∑
N

ANBN , (3)

All Greek indices are indices over 0, 1, 2, 3. Indices represented by capital Latin letters cover

0, 1, 2, 3, z. Indices are lowered with the metric gMN and raised by its inverse, gMN :

AN = gMNA
M ;AN = gMNAM , (4)

The metric gMN in the models is:
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gMN =
R2

z2



1 0 0 0 0

0 −1 0 0 0

0 0 −1 0 0

0 0 0 −1 0

0 0 0 0 −1


, (5)

where R is the AdS curvature. The models we will be dealing with include fields X, a scalar field,

and AMR and AML , vector fields coupling to currents of right- and left-handed quarks, respectively. It

is sometimes convenient to define vector fields AM and VM , respectively the axial vector and vector

fields, as follows:

AM =
AML −AMR

2
, (6)

VM =
AML +AMR

2
, (7)

The models considered herein are hard-wall models, meaning that the boundaries in the fifth di-

mension are at fixed values of the coordinate z. As a result, the masses of heavy particles predicted

by the models are proportional to n2, for some integer n. An analogy to this is the problem of

the particle-in-a-box of quantum mechanics. However, in QCD, rest frame masses grow as radial

quantum number n, not as n2. Thus hard-wall models are effective for low energy particles, but are

not accurate at higher energies. As a result, the models consider low-energy bosons.

2.2 The “old” model

The action of the model can be written as follows:

S =

∫
d5x
√
|g|Tr

{
|DX|2 + 3|X|2 − 1

4g2
5

(F 2
L + F 2

R)

}
, (8)

where g is the determinant of gMN , DM is the covariant derivativeDMX = ∂MX−iALMX+iXARM ,

F 2
L,R = (FL,R)MN (FL,R)MN , |DX|2 = (DMX

†)(DMX), and FMN = ∂MAN − ∂NAM − i[AM , AN ].

There is a degree of gauge freedom, so ALz, ARz are both set to 0. The parameter g2
5 is found to be

12π2

Nc
, where Nc = 3 is the number of colors in QCD. The AdS curvature R is set to 1 for simplicity

[2].

Substituting A and V according to eqs. (6) and (7) for AL and AR in eq. (8) yields the following,
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to second order in the fields:

S =

∫
d5x
√
|g|Tr

{
|DX|2 + 3|X|2 − 1

4g2
5

(F 2
A + F 2

V )

}
, (9)

where now DµX = ∂µX + i[VµT,X] − i{AµT,X}. The matrices T a = σa

2 , where the σa are the

Pauli sigma matrices.

The background solution for X is 〈X〉 = 1
2Mqz + 1

2Σz3. The matrices Σ,Mq are assumed to be

mq1, σ1. Thus X is a scalar times the identity matrix. The expression for DMX may be simplified

for calculations about the background solution because the commutator must cancel.

From eq. (9), we can derive the equations of motion for the axial vector and vector fields. This

yields:

∂z

(
1

z
∂zVµ(q, z)

)
+
q2

z
Vµ(q, z) = 0, (10)

where V (q, z) is the Fourier transform of V (x, z):

V (q, z) =

∫
d4xV (x, z)eiq·x, (11)

Likewise for A(q, z), the Fourier transform of A(x, z), we get the following:

∂z

(
1

z
∂zAµ(q, z)

)
+
q2

z
Aµ(q, z)− g2

5v(z)2

z3
Aµ = 0, (12)

where v(z) = mqz + σz3, which is twice the background solution to X. These fields are normalized

such that:

∫ zm

ε

dz

z
ψ(z)2 = 1, (13)

where ψ is the solution to the equations of motion in eqs. (10) or (12) with boundary conditions to

be specified later.

2.3 The “New” Model

The action and boundary conditions are the same for the new model:

S =

∫
d5x
√
|g|Tr

{
|DX|2 + 3|X|2 − 1

4g2
5

(F 2
L + F 2

R)

}
, (14)

We also keep the gauge choice ARz = ALz = 0. The physics is changed in this model by the
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parameterization of the expansion of the field X. In the old model, X was expanded about the

background solution in the following way:

X(x, z) =

(
1

2
(m̃qz + σz3) + S̃(x, z)

)
Ũ(x, z), (15)

The new model description is, taking m̃q to −2mq:

X(x, z) = −mqz +
(σ

2
z3 + S(x, z)

)
U(x, z), (16)

where S(x, z) is a hermitian matrix not to be confused with the action S, the integral of L over all

space, and U(x, z) is a unitary matrix defined as U = eiπ
a(x,z)σa , where π is the pion field, the σa

are the Pauli sigma matrices, and a ∈ {1, 2, 3} is a gauge index. S̃(x, z) and Ũ(x, z) are hermitian

and unitary matrices, respectively, the tildes are used to signify that these two matrices are not

necessarily the same as S(x, z) and U(x, z). It is possible to parameterize any matrix as the product

of a hermitian matrix and a unitary matrix. Therefore with the same boundary conditions placed

on X, the field would be no different. The difference between the models is that the boundary

conditions on S(x, z) and π(x, z) differ. The boundary conditions for S and π are [3]:

π(x, ε) = S(x, ε) = S(x, zm) = 0, (17)

∂zπ(x, z)|zm =
m̃q

σz3
m

π (18)

If these boundary conditions are applied equally to eqs. (15) and (16), then there are different

boundary conditions on X due to the different parameterization. The boundary conditions are

modified by changing m̃q → −2mq, which when decomposed into the Kaluza-Klein mode π(x, z) =

π(x)ψ(z), sets the IR boundary condition:

∂zψ(z)|zm = −2mq

σz3
m

ψ(zm) (19)

Since the action is the same, the equation of motion for V (q, z) is unaltered. This does result in v(z)

changing from v(z) = m̃qz + σz3 to v(z) = −2mqz + σz3. Because of this, the equation of motion

for A(q, z) changes.
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2.4 The Model of Da Rold and Pomerol

The action in the model of Da Rold and Pomerol is the same as the action in the previous models

up to normalizations of the fields:

S = M5

∫
d5x
√
|g|Tr

[
−1

4
F 2
L −

1

4
F 2
R +

1

2
|DMX|2 −

1

2
M2

Φ|X|2
]
, (20)

where M5 is a gauge coupling, and M2
Φ = 3

R2 is a parameter of the model, where R is the AdS

curvature, and as before DMX = ∂MX + iALMX − iXARM , and AL, AR are the vector fields

coupled to currents of left- and right-handed quarks. The definitions for A and V used by Da Rold

and Pomerol differ by a factor of
√

2 from the previously established definitions, but that has been

accounted for in the following equations. Da Rold and Pomerol make a more complicated gauge

choice, by adding the gauge fixing term to the Lagrangian [5]:

LVgf = −M5a(z)

ξV
Tr

[
∂µVµ −

ξV
a(z)

∂z(a(z)Vz)

]2

, (21)

LAgf = −M5a(z)

ξA
Tr

[
∂µAµ −

ξA
a(z)

∂z(a(z)Az)− ξAa2(z)v(z)π(x, z)

]2

, (22)

where ξA,V are arbitrary parameters used to set the gauge and π(x, z) is the pion field. The gauge

is set by taking ξA,V →∞, thus forcing the terms of order ξ to go to zero. Therefore the gauge is:

∂z(a(z)Vz) = 0, (23)

π(x, z) = − 1

a3(z)v(z)
∂z(a(z)Az), (24)

Plugging these equations into the gauge fixing terms in eqs. (21) and (22) cancels the terms of zeroth

and first order in ξ in the gauge fixing term, leaving a term proportional to ξ−1, which does not

contribute in the limit ξA,V →∞. Thus these gauge fixing terms may be added to the Lagrangian

to set the gauge, without changing the physics within the original Lagrangian.

2.5 The Model of Domenech, Panico and Wulzer

The action for the scalar field X is as follows [6]:
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SX = M5

∫
d5xa3(z)

[
Tr|DMX|2 − a2(z)M2

bulkTr|X|2
]
, (25)

where M2
bulk is a parameter of the model and M5 is the gauge coupling. In this model [6], they

choose the same gauge as in the previous section, with a gauge fixing term very similar to that in

the previous section:

LVgf = −2M5a(z)

ξV
Tr

[
∂µV

µ − ξV
a(z)

∂z(a(z)Vz)

]2

, (26)

LAgf = −2M5a(z)

ξA
Tr

[
∂µA

µ − ξA
a(z)

∂z(a(z)Az)− ξAa2(z)v(z)π(x, z)

]2

, (27)

where once again ξV,A are arbitrary parameters used to fix the gauge, v(z) is the vacuum expectation

value of the scalar field, and π(x, z) is the pion field. Again taking ξA,V →∞ sets the gauge:

∂z(a(z)Vz) = 0, (28)

π(x, z) = − 1

a3(z)v(z)
∂z(a(z)Az), (29)

3 Chiral Symmetry Breaking in the Models

Chiral symmetry is a symmetry in which quark fields charged under SU(2)L, i.e. left-handed fields,

transform as:

qL → ULqL, (30)

where UL is a unitary matrix. Those fields charged under SU(2)R, i.e. right-handed fields, transform

as:

qR → qRU
†
R, (31)

where UR is a unitary matrix. The scalar field X transforms as follows:

X → ULXU
†
R, (32)

This implies that the unitary matrix U with which we expand about the vacuum expectation value
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of X transforms in the same way. The chiral symmetry is explicitly broken in the chiral Lagrangian

by a term proportional to:

Tr[UM†q +MqU
†], (33)

The term inside the trace transforms like:

UM†q +MqU
† → ULUU

†
RM

†
q +MqURU

†U†L 6= UL(UM†q +MqU
†)U†R, (34)

Since this term is not invariant under chiral symmetry, except for the case UL = UR, the chiral

symmetry is broken. The matrix U = eiπ
aσa contains terms of all orders in the pion field π,

therefore chiral symmetry is broken beyond the leading order in the pion field. Since Mq multiplies

this term, we say that a non-zero quark mass explicitly breaks the chiral symmetry.

3.1 The Pion and Goldstone’s Theorem

Goldstone’s theorem states, in its relativistic form, that when there is an exact symmetry which is

spontaneously broken, then there is a corresponding massless particle. When there is an approximate

symmetry that is broken, there is a low-mass particle corresponding to the symmetry. This particle is

the Goldstone boson corresponding to the field. Since chiral symmetry is an approximate symmetry,

when it is broken, there is a low-mass particle. For chiral symmetry, this particle is the pion.

3.2 Chiral Symmetry Breaking in the “Old” Model

Taking the scalar field action from eq. (9) and substituting in the expansion for X from eq. (15),

perturbing only U about 〈X〉 with S(x, z) = 0, which is possible because to second order S decouples

from the other fields, we get:

S ⊃
∫
d5x
√
|g|Tr

{∣∣∣∣D [1

2
(mqz + σz3)U(x, z)

]∣∣∣∣2 + 3

∣∣∣∣12(mqz + σz3)U(x, z)

∣∣∣∣2
}
, (35)

Since U is unitary, the |X|2 term looks like the following:

|X|2 =
1

2
(mqz + σz3)U(x, z)U†(x, z)

1

2
(mqz + σz3)† =

1

4
|mqz + σz3|2, (36)

Therefore this cannot contribute to chiral symmetry breaking because it lacks any factors of π(x, z).

Let us now consider the |DX|2 term:
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|DX|2 = DM

[
1

2
(mqz + σz3)U(x, z)

](
DM

[
1

2
(mqz + σz3)U(x, z)

])†
, (37)

If we substitute the Kaluza-Klein mode of the pion field π(x, z) = π(x)ψ(z) and turn off the coupling

g2
5 , effectively driving the fields A, V to zero so that we may replace DMX with ∂MX, then we get

the following:

|DX|2 =
1

4
|mqz + σz3|2∂µ[U(x, z)]∂µ[U†(x, z)]

−1

4
∂z[(mqz + σz3)U(x, z)]

1

z2
∂z[U

†(x, z)(mqz + σz3)†], (38)

where ∂z has the index lowered with gzz = − 1
z2 . Next we take the derivatives:

∂µU(x, z) = iπa′(x)ψ(z)σaU(x, z), (39)

∂zU(x, z) = iπa(x)ψ′(z)σaU(x, z), (40)

Since the σ matrices have the property Tr(σaσb) = 2δab , we have Tr(πaσaσbπb) =Tr(πaπa), summing

over a, b ∈ {1, 2, 3}. Thus, considering only the terms with a nonzero trace:

|DX|2 =
1

4
|(mqz + σz3)ψ(z)|2∂µπa(x)∂µπa(x)

− 1

4z2

[
(mq + 3σz2)U(x, z) + i(mqz + σz3)πa(x)ψ′(z)σaU(x, z)

]
·
[
U†(x, z)(mq + 3σz2)† − iU†(x, z)σaψ′(z)πa(x)(mqz + σz3)†

]
, (41)

Assuming mq, σ real, this is:

|DX|2 =
1

4

[
v2(z)ψ2(z)∂µπ

a(x)∂µπa(x)− 1

z2

[(
mq + 3σz2

)2
+ v2(z)(πa(x))2ψ′2(z)

]]
, (42)

The term v2(z)(πa(x))2ψ′2(z) breaks chiral symmetry, but it is only to second order in the pion

field. For chiral symmetry to be correctly represented, we must have the correct pattern of chiral

symmetry breaking beyond the leading order. Thus we must either change the boundary conditions,

e.g. choose a non-zero S(x, z), or change the expansion of X about the vacuum expectation value
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[3].

3.3 Chiral Symmetry Breaking in the “New” Model

Changing the boundary conditions in the old model results in complicated non-linear boundary

conditions [3]. Thus it is easier to re-parameterize the field X as in eq. (16) with boundary conditions

given in eqs. (17), (18), and (19). The action is the same as in eq. (9), and as before we will ignore

the terms that do not include the scalar field, so we are left with a term proportional to |X|2 and a

term proportional to |DX|2. Let us first consider the |X|2 term, once again keeping S(x, z) = 0:

|X|2 =
[
mqz +

σ

2
z3U(x, z)

] [
m†qz +

U†(x, z)σ†

2
z3

]
= m2

qz
2 +

σ2

4
z6 +

z4

2

[
mqU

†(x, z)σ† + σU(x, z)m†q
]
, (43)

Since σ is real and proportional to 1, we can rewrite the last term:

|X|2 ⊃ σz4

2
[mqU

† + Um†q], (44)

To ensure that the chiral symmetry breaking term does not cancel with another term within the

Lagrangian, we will now look at the |DX|2 term, keeping the assumptions from the previous section

in place so that DM = ∂M

|DX|2 = ∂µ

[
mqz +

σ

2
z3U(x, z)

] [
∂µ
(
mqz +

σ

2
z3U(x, z)

)]†
− 1

z2
∂z

[
mqz +

σ

2
z3U(x, z)

] [
∂z

(
mqz +

σ

2
z3U(x, z)

)]†
, (45)

where once again ∂z has the index lowered with gzz. Using eqs. (39) and (40) we obtain:

|DX|2 =
|σ|2

4
z6[i∂µπ

a(x)ψ(z)σaU(x, z)][−iU†(x, z)σbψ(z)∂µπb(x)]

− 1

z2

[
mq +

3σ

2
z2U(x, z) +

iσ

2
z3πa(x)ψ′(z)σaU(x, z)

]
·
[
m†q + U†(x, z)

3σ†

2
z2 − iU†(x, z)σbψ′(z)πb(x)

σ†

2

]
, (46)

Expanding and simplifying with Tr(σaσb) = 2δab , we have:
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|DX|2 =
|σ|2ψ2(z)

4
z6∂µπ

a(x)∂µπa(x)

−|mq|2

z2
− 9|σ|2

4
z2 − |σ|

2ψ′2(z)

4
πa(x)πa(x)

−mqσ
†

2z2

(
U†(x, z)3z2 − iU†(x, z)σbψ′(z)πb(x)

)
−
(
3z2U(x, z) + iz3πa(x)ψ′(z)σaU(x, z)

) m†qσ
2z2

, (47)

Any additional terms cancel as long as π(x), ψ(z) are real. We may neglect the terms with σa

remaining since the trace of the sigma matrices is zero, and we will be taking the trace in the

Lagrangian. Choosing σ real and proportional to 1, we are left with:

|DX|2 =
|σ|2ψ2(z)

4
z6∂µπ

a(x)∂µπa(x)− |mq|2

z2
− 9|σ|2

4
z2 − |σ|

2ψ′2(z)

4
πa(x)πa(x)

−3σ

2

[
mqU

†(x, z) + U(x, z)m†q
]
, (48)

Plugging the terms that contain the pattern of chiral symmetry breaking into the action, we get:

S ⊃
∫
d5x
√
|g|Tr

[
|DX|2 + 3|X|2

]
⊃

∫
d5x
√
|g|Tr

[(
3σz4

2
− 3σ

2

)
[mqU

† + Um†q]

]
, (49)

Therefore there is a chiral symmetry breaking term in the new model.

3.4 Chiral Symmetry Breaking in Domenech et. al.

Domenech et al. show in Ref. [6] that their model has the proper representation of chiral symmetry

breaking. Here, we show the same process in additional detail. The field X is parameterized in a

similar way as in the “old” model, since U multiplies all of v(z):

X = (v1 + S)eiπ(x,z)/v = (v1 + S)U, (50)

where v(z) ≡ 〈X〉 is:
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v(z) =
z2α
m

z2α
m − ε2α

(
z

zm

)∆+

(ξ −Mq)1 +
1

z2α
m − ε2α

(
z

zm

)∆−

(z2α
m Mq − ε2αξ)1, (51)

where ∆± = 2±α, and α is a parameter of the model. For the old and new models, α = 1, in which

case there would be a z and a z3 term, as is in v(z) in those models. The boundary conditions on

π(x, z) and S(x, z) are:

S(x, zm) = S(x, ε) = π(x, zm) = π(x, ε) = 0 (52)

X is expanded in momentum terms:

X = X(0)(z) +X(2)(p, z, Â, V̂ , U,Mq) +X(4)(p, z, Â, V̂ , U,Mq), (53)

where Â, V̂ are A, V evaluated at the UV boundary zm, and the superscript indicates the order of

the momentum term. Terms with odd powers of momentum vanish [6]. After integration by parts,

the action contains the term:

S ⊃M5

∫
UV,IR

d4xa3(z)Tr[X†∂zX + (∂zX)†X], (54)

Domenech et al. place the following IR boundary conditions on the X(i):

X(0)(x, z = zm) = ξ1,

X(i)(x, z = zm) = 0, i ≥ 2, (55)

where ξ is a parameter of the model. The UV boundary conditions are:

X(0)(x, z = ε) = 0,

X(2)(x, z = ε) = U

(
ε

zm

)∆−

M†q , (56)

X(i)(x, z = ε) = 0, i ≥ 4,

Since Mq is of second order in momentum, the only terms that contribute to the chiral symmetry

breaking term are of second order in momentum:
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S ⊃M5

∫
UV,IR

d4xa3(z)Tr[X(0)†∂zX
(2) +X(2)†∂zX

(0) + h.c.], (57)

where h.c. is the hermitian conjugate of the previous terms. On the IR boundary, X(2) goes to

zero, thus the term X(2)†∂zX
(0) vanishes. Although X(2) is zero, the boundary conditions do not

place restrictions on the z-derivative of X(2), therefore the term X(0)†∂zX
(2) does not necessarily

vanish on the IR boundary; however, Domenech et al. consider the UV boundary only. On the UV

boundary, X(0) is zero, therefore the only term in the UV that contributes is:

S ⊃M5

∫
UV

d4xa3(z)Tr[X(2)†∂zX
(0) + h.c.], (58)

The definition of X(0) is X in eq. (51) in the limit Mq → 0 [6]:

X(0)(z) =
z2α
m

z2α
m − ε2α

(
z

zm

)∆+

ξ1− ε2α

z2α
m − ε2α

(
z

zm

)∆−

ξ1, (59)

Taking the z-derivative:

∂zX
(0)(z) = ∆+ z2α

m

z2α
m − ε2α

z∆+−1

z∆+

m

ξ1−∆−
ε2α

z2α
m − ε2α

z∆−−1

z∆−
m

ξ1, (60)

Evaluated at the UV boundary:

∂zX
(0)(ε) = ∆+ z2α

m

z2α
m − ε2α

ε∆
+−1

z∆+

m

ξ1−∆−
ε2α

z2α
m − ε2α

ε∆
−−1

z∆−
m

ξ1, (61)

Since ∆+ = ∆− + 2α, this simplifies further:

∂zX
(0)(ε) = 2α

ε∆
−+2α−1

(z2α
m − ε2α)z∆−

m

ξ1, (62)

Substituting back into eq. (58) for ∂zX
(0) and X(2), and plugging in z = ε, we get:

S ⊃ 2αξM5

∫
d4x

(
L

ε

)3

Tr

[
MqU

† ε2∆−+2α−1

(z2α
m − ε2α)z2∆−

m

+ h.c.

]
, (63)

Substituting in for ∆− = 2− α, we get:

S ⊃ 2αξL3M5

∫
d4xTr

[
MqU

† 1

z4
m − ε2αz2∆−

m

+ h.c.

]
, (64)

Finally, setting the AdS curvature R = zm, as was done in this model, and taking the limit ε → 0,
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we get:

S ⊃ 2αξ

R
M5

∫
d4xTr[MqU

† + h.c.], (65)

Substituting in the hermitian conjugate of MqU
†:

S ⊃ 2αξ

R
M5

∫
d4xTr[MqU

† + UM†q ], (66)

Therefore we can see that we have the chiral symmetry breaking term in the model.

3.5 Chiral Symmetry Breaking in Da Rold and Pomerol

Da Rold and Pomerol use the same gauge choice as Domenech et al. However, their definition of

v(z) ≡ 〈X〉 and boundary conditions on X differ. v(z) is:

v(z) =
M̃qz

3
m − ξε2

Rzm(z2
m − ε2)

z +
ξ − M̃qzm

Rzm(z2
m − ε2)

z3 (67)

where M̃q and ξ are defined as follows:

M̃q =
R

ε
v(ε) (68)

ξ = Rv(zm) (69)

The expansion about X is the same as in eq. (50), with v(z) defined in the above equation. The IR

boundary conditions for S and Az, which has been related to the pion field by the gauge choice in

eq. (22), are chosen:

[M5∂z + 2a(z)m2
S ]S|zm = 0 (70)

Az(x, zm) = 0 (71)

where mS is a mass term associated with the field S. Da Rold and Pomerol then claim that it is

possible to derive a Lagrangian to O(p2):

L2 =
F 2
π

4
Tr[DµU

†DµU + U†χ+ χ†U ] (72)
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where Fπ is the pion decay constant, U is defined differently from before as U = ei
√

2π/Fπ and

χ = 2B0(Mq + s + ips) where B0 is a constant, and s and ps are fictitious scalar and pseudoscalar

sources used to calculate correlation functions. These terms include the chiral symmetry breaking

term since this newly defined U still contains the pion field to an arbitrarily high order, and it is

multiplied by M†q , with the hermitian conjugate added:

L2 =
F 2
π

4
Tr[U†Mq +MqU ] (73)

Therefore if this term is correct, the model includes chiral symmetry breaking beyond leading order.

There were initial doubts as to whether this model contained chiral symmetry breaking terms beyond

leading order or whether, like Ref. [2], it was only assumed. Then it was found in Ref. [6] that it

was possible to have the correct representation of chiral symmetry breaking with the expansion of

the field X written as in eq. (50).

4 Model Results and Pion Physics

4.1 Calculating Observables in the “Old” and “New” Models

The boundary conditions for the Kaluza-Klein modes of V (q, z) are:

V (mρ, ε) = 0,

∂zV (mρ, zm) = 0, (74)

Non-trivial solutions for V (q, z) from eq. (10) are of the form:

V (q, z) = zJ1(mρz), (75)

where J1 is the Bessel J function. The wavefunction V (q, z) describes the rho meson, therefore solving

such that V (q, zm) is zero, where q is the mass of the rho meson, 775 MeV, yields zm = 1/(323MeV)

[2]. The rho meson decay constant Fρ is a parameter of how likely a rho meson is to couple to a

photon:

F 2
ρ =

1

g2
5

[V ′′(mρ, 0)]2, (76)
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where primes signify derivatives with respect to z [2]. Calculating F
1
2
ρ from eq. (76) yields F

1
2
ρ = 329

MeV.

We calculate fπ from the following:

f2
π = − 1

g2
5

∂zA(0, z)

z
|z→ε, (77)

where ε is an arbitrarily small, non-zero value. This definition of fπ and the known value for mq and

mπ are combined with the GOR relation (1) to calculate σ = (327 MeV)3. The boundary conditions

of A for the calculation of the pion decay constant are: [2]

A(0, ε) = 1,

∂zA(0, zm) = 0, (78)

Solutions for the Kaluza-Klein modes of A(q, z) from eq. (12) do not have an analytic solution, but

a numeric solution may be calculated using the boundary conditions:

A(q, ε) = 0,

∂zA(q, zm) = 0, (79)

From the numerical solution we find that the mass of the lowest energy Kaluza-Klein mode of the

axial vector field to be 1363 MeV, thus we identify this field to be the field of the a1 particle. We

can calculate the a1 decay constant, which is a measure of the probability the a1 will couple to a W

or Z boson, as follows:

F 2
a1 =

1

g2
5

[A′′(ma1 , 0)]2, (80)

we find F
1
2
a1 = 486 MeV.

4.2 New Model

All of the preceding calculations were accomplished using the model from Ref. [2]. The original

model described low-energy hadronic physics about the background solution to X. Changing the

definition of X(x, z) in the model amounts to change in the boundary conditions. Adjusting for the
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new boundary conditions changes v(z). Previously, v(z) = mqz + σz3. Now v(z) = −2mqz + σz3.

This does not affect any of the calculations for the rho meson, but it does change the numerical values

for the a1. σ is set to 333 (MeV)3. fπ is no longer held to the exact experimental value, with these

values fπ = 91.7 Following the same procedure as earlier yield the following values: ma1 = 1366

MeV, F
1/2
a1 = 491 MeV.

4.3 Calculations

The following table gives experimental and calculated values in MeV (asterisks indicate values fixed

to experimental values):

Observable Measured Old Model New Model Da Rold Domenech

mπ 139.6±0.0004 [2] 139.6* 139.6* 135 [7] 134 [6]

mρ 775.8±0.5 [2] 775.8* 775.8* 770 [7] 783 [6]

ma1 1230±40 [2] 1363 1366 1230 [7] 1320[6]

fπ 92.4±0.35 [2] 92.4* 91.7* 87 [7] 89 [6]

F
1/2
ρ 345±8 [2] 329 329 343 [7] 342 [6]

F
1/2
a1 433±13 [2] 486 491 444 [7]

RMS error 10% 11% 3% 4%

The data from Ref. [7] is optimized by choosing ξ in their model. The data for Fρ and Fa1 is given

using a different convention in Refs. [6] and [7]. These data were rescaled in the same convention

as the old and new models for comparison. Domenech et al. did not calculate Fa1 . The RMS error

in the model is found using the following formula [2]:

εRMS =

[
1

n

∑
O

(δO/O)2

]1/2

(81)

where n is the number of independent observables, and O is each independent observable. This

yields an error of 10% for the old model and 11% for the new model. σ is chosen in the new model

to be close to the value in the old model, therefore fπ is considered to be fixed even though it is

not fixed to the exact experimental value. Correcting for the pattern of chiral symmetry breaking

leads to a model that is less accurate with regards to the above observables, but only slightly; we

still prefer the new model because it it qualitatively correct in the representation of chiral symmetry

breaking. This table is not complete. It does not contain all possible observables that could be

calculated with the models, but rather the observables which are simple to calculate, and have been
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calculated by the author in the old and new models and the equivalent calculations performed by

the authors of the other models.

5 Conclusions

The correct representation of chiral symmetry breaking is necessary to properly model pion conden-

sation. For calculating those observables which are simple to calculate, we see that the gauge and

whether chiral symmetry breaking terms exist beyond leading order only changes the agreement with

experiment between the old and new models by about 1%. We also find that despite an unknown

precision, the results are accurate to approximately 10% for the observables calculated.

A Lagrangian Field Equations

Suppose we are given an action:

S =

∫
dnxL, (82)

where L is the Lagrangian density, often referred to as just the Lagrangian. L is a function of some

field A and its derivatives. It is possible to obtain an equation of motion for the field A using the

following:

∂µ

(
∂L

∂(∂µAν)

)
=

∂L
∂Aν

, (83)

where ∂µA is shorthand:

∂µA =
∂A

∂xµ
, (84)

B Finding Masses from Kaluza-Klein modes

The Kaluza-Klein modes are special solutions to the equations of motion that can be decomposed

as follows:

A(x, z) = A(x)ψ(z), (85)
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These can be used to find the mass of a particle corresponding to a field. The relativistic energy of

a particle is (setting the speed of light c = 1):

E2 = p2 +m2, (86)

where p2 is the five-dimensional momentum squared and m2 is the field’s mass squared. Since p2 is

the sum of the momentum squared in each dimension, we can rewrite it as follows:

E2 = ~p2 + p2
5 +m2, (87)

Since the momentum in the fifth dimension is not measurable in 4 dimensions, the extra momentum

p2
5 term contributes to an effective mass term:

E2 = ~p2 +m2
eff , (88)

In the special case where the field has no mass, we see that meff = |p5|. Since p5 is dependent on

the z-derivative of the Kaluza-Klein mode, if we know the Kaluza-Klein mode, we can calculate the

effective mass.
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